题目
若 \tan{ \theta } = \dfrac{ 3 }{ 7 },求下式的值:
\dfrac{ \cos^{ 3 }{ \theta } + \sin{ \theta } }{ \cos{ \theta } - \sin{ \theta } } - \dfrac{ 2 }{ \cos^{ 4 }{ \theta } - 1 }
解析
\begin{aligned}
\dfrac{ \cos^{ 3 }{ \theta } + \sin{ \theta } }{ \cos{ \theta } - \sin{ \theta } } - \dfrac{ 2 }{ \cos^{ 4 }{ \theta } - 1 } & = \dfrac{ \cos^{ 3 }{ \theta } + \sin{ \theta } \cos^{ 2 }{ \theta } + \sin^{ 3 }{ \theta } }{ \cos^{ 3 }{ \theta } - \sin{ \theta } \cos^{ 2 }{ \theta } + \sin^{ 2 }{ \theta } \cos{ \theta } - \sin^{ 3 }{ \theta } } - \dfrac{ 2 \cos^{ 4 }{ \theta } + 4 \sin^{ 2 }{ \theta } \cos^{ 2 }{ \theta } + 2 \sin^{ 4 }{ \theta } }{ -2 \sin^{ 2 }{ \theta } \cos^{ 2 }{ \theta } - \sin^{ 4 }{ \theta } } \\
& = \dfrac{ 1 + \tan{ \theta } + \tan^{ 3 }{ \theta } }{ 1 - \tan{ \theta } + \tan^{ 2 }{ \theta } - \tan^{ 3 }{ \theta } } + \dfrac{ 2 + 4 \tan^{ 2 }{ \theta } + 2 \tan^{ 4 }{ \theta } }{ 2 \tan^{ 2 }{ \theta } + \tan^{ 4 }{ \theta } } \\
& = \dfrac{ 1 + \dfrac{ 3 }{ 7 } + \left ( \dfrac{ 3 }{ 7 } \right )^{ 3 } }{ 1 - \dfrac{ 3 }{ 7 } + \left ( \dfrac{ 3 }{ 7 } \right )^{ 2 } - \left ( \dfrac{ 3 }{ 7 } \right )^{ 3 } } + \dfrac{ 2 + 4 \left ( \dfrac{ 3 }{ 7 } \right )^{ 2 } + 2 \left ( \dfrac{ 3 }{ 7 } \right )^{ 4 } }{ 2 \left ( \dfrac{ 3 }{ 7 } \right )^{ 2 } + \left ( \dfrac{ 3 }{ 7 } \right )^{ 4 } } \\
& = \dfrac{ 2058767 }{ 223416 }
\end{aligned}
by CXY。