题目

\triangle ABC 中,O\triangle ABC 的外心,且 5 \overrightarrow{ OA } + 6 \overrightarrow{ OB } + 7 \overrightarrow{ OC } = \boldsymbol{ 0 },求 \cos{ A }

解析

因为有 5 \overrightarrow{ OA } + 6 \overrightarrow{ OB } + 7 \overrightarrow{ OC } = \boldsymbol{ 0 },故 6 \overrightarrow{ OB } + 7 \overrightarrow{ OC } = -5 \overrightarrow{ OA },则有:

\left ( 6 \overrightarrow{ OB } + 7 \overrightarrow{ OC } \right )^{ 2 } = \left ( -5 \overrightarrow{ OA } \right )^{ 2 }

即:

36 \overrightarrow{ OB }^{ 2 } + 49 \overrightarrow{ OC }^{ 2 } + 84 \overrightarrow{ OB } \cdot \overrightarrow{ OC } = 25 \overrightarrow{ OA }^{ 2 }

由于 \overrightarrow{ OA }^{ 2 } = \overrightarrow{ OB }^{ 2 } = \overrightarrow{ OC }^{ 2 } = k\overrightarrow{ OB } \cdot \overrightarrow{ OC } = \left | \overrightarrow{ OB } \right | \cdot \left | \overrightarrow{ OC } \right | \cos{ \angle BOC } = k \cos{ \angle BOC }\overrightarrow{ OB } \cdot \overrightarrow{ OC } = -\dfrac{ 5 }{ 6 } \overrightarrow{ OA }^{ 2 },故有 \cos{ \angle BOC } = -\dfrac{ 5 }{ 7 },故有:

\cos{ A } = \cos{ \dfrac{ \angle BOC }{ 2 } } = \sqrt{ \dfrac{ 1 + \cos{ \angle BOC } }{ 2 } } = \dfrac{ \sqrt{ 7 } }{ 7 }

by CXY。