题目

求解函数方程:

f ( x ) + 2 f \left ( \dfrac{ x - 1 }{ x + 1 } \right ) = x

解析

u = \dfrac{ x - 1 }{ x + 1 }, \dfrac{ u - 1 }{ u + 1 } = -\dfrac{ 1 }{ x },代入原式,则有:

f \left ( \dfrac{ x - 1 }{ x + 1 } \right ) + 2 f \left ( -\dfrac{ 1 }{ x } \right ) = \dfrac{ x - 1 }{ x + 1 }

u = -\dfrac{ 1 }{ x }, \dfrac{ u - 1 }{ u + 1 } = -\dfrac{ x + 1 }{ x - 1 },代入原式,则有:

f \left ( -\dfrac{ 1 }{ x } \right ) + 2 f \left ( -\dfrac{ x + 1 }{ x - 1 } \right ) = -\dfrac{ 1 }{ x }

u = -\dfrac{ x + 1 }{ x - 1 }, \dfrac{ u - 1 }{ u + 1 } = x,代入原式,则有:

f \left ( -\dfrac{ x + 1 }{ x - 1 } \right ) + 2 f ( x ) = -\dfrac{ x + 1 }{ x - 1 }

联立上式可以解得:

\begin{aligned} -15 f ( x ) & = x - \dfrac{ 2 ( x - 1 ) }{ x + 1 } - \dfrac{ 4 }{ x } + \dfrac{ 8 ( x + 1 ) }{ x - 1 } \\ & = \dfrac{ x^{ 2 } ( x - 1 ) ( x + 1 ) - 2 x ( x - 1 )^{ 2 } - 4 ( x - 1 ) ( x + 1 ) + 8 x ( x + 1 )^{ 2 } }{ x ( x - 1 ) ( x + 1 ) } \\ & = \dfrac{ x^{ 4 } + 6 x^{ 3 } + 15 x^{ 2 } + 6 x + 4 }{ x^{ 3 } - x } \end{aligned}

故有:

f ( x ) = -\dfrac{ x^{ 4 } + 6 x^{ 3 } + 15 x^{ 2 } + 6 x + 4 }{ 15 x^{ 3 } - 15 x }

by CXY。