题目
设正实数 a, b, c 满足 a + b + c = \dfrac{ 4 }{ 3 },求证:
7 ( a + b )^{ 2 } + 7 ( b + c )^{ 2 } + 7 ( c + a )^{ 2 } + 9 a b c \geq \dfrac{ 1408 }{ 81 }
解析
因为有:
\begin{aligned}
( a + b )^{ 2 } + ( b + c )^{ 2 } + ( c + a )^{ 2 } & = 2 ( a + b + c )^{ 2 } - 2 ( a b + b c + c a ) \\
& = \dfrac{ 32 }{ 9 } - 2 ( a b + b c + c a )
\end{aligned}
所以原不等式即:
\dfrac{ 224 }{ 9 } - 14 ( a b + b c + c a ) + 9 a b c \geq \dfrac{ 1408 }{ 81 }
即:
\dfrac{ 14 }{ 9 } ( a b + b c + c a ) - a b c \leq \dfrac{ 608 }{ 729 }
构造函数:
\begin{aligned}
f ( x ) & = ( x - a ) ( x - b ) ( x - c ) \\
& = x^{ 3 } - \dfrac{ 4 }{ 3 } x^{ 2 } + ( a b + b c + c a ) x - a b c
\end{aligned}
则有:
f \left ( \dfrac{ 14 }{ 9 } \right ) = \left ( \dfrac{ 14 }{ 9 } \right )^{ 3 } - \dfrac{ 4 }{ 3 } \left ( \dfrac{ 14 }{ 9 } \right )^{ 2 } + \dfrac{ 14 }{ 9 } ( a b + b c + c a ) - a b c
且因为 0 < a, b, c < \dfrac{ 4 }{ 3 },故有:
\begin{aligned}
f \left ( \dfrac{ 14 }{ 9 } \right ) & = \left ( \dfrac{ 14 }{ 9 } - a \right ) \left ( \dfrac{ 14 }{ 9 } - b \right ) \left ( \dfrac{ 14 }{ 9 } - c \right ) \\
& \leq \dfrac{ 1 }{ 27 } \left ( \left ( \dfrac{ 14 }{ 9 } - a \right ) + \left ( \dfrac{ 14 }{ 9 } - b \right ) + \left ( \dfrac{ 14 }{ 9 } - c \right ) \right )^{ 3 } \\
& = \dfrac{ 1000 }{ 729 }
\end{aligned}
故有 f \left ( \dfrac{ 14 }{ 9 } \right ) \leq \dfrac{ 1000 }{ 729 },即:
\left ( \dfrac{ 14 }{ 9 } \right )^{ 3 } - \dfrac{ 4 }{ 3 } \left ( \dfrac{ 14 }{ 9 } \right )^{ 2 } + \dfrac{ 14 }{ 9 } ( a b + b c + c a ) - a b c \leq \dfrac{ 1000 }{ 729 }
故有:
\dfrac{ 14 }{ 9 } ( a b + b c + c a ) - a b c \leq \dfrac{ 608 }{ 729 }
by CXY。